A bi-symmetric log transformation for wide-range data
نویسندگان
چکیده
منابع مشابه
A Bi-Symmetric Log transformation for wide-range data
The logarithmic transformation has long been used to present data that has both large and small components that are significant, such as neutron scattering data, or to present data that say covers a wide range of time-scales, such as NMR relaxation data. A more general transformation, that is applicable to many different disciplines, is offered here, that is particularly suitable for representi...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولCoefficient Estimates for a New Subclasses of m-fold Symmetric Bi-Univalent Functions
The purpose of the present paper is to introduce two new subclasses of the function class ∑m of bi-univalent functions which both f and f-1 are m-fold symmetric analytic functions. Furthermore, we obtain estimates on the initial coefficients for functions in each of these new subclasses. Also we explain the relation between our results with earlier known results.
متن کاملData Transformation and Semantic Log Purging for Process Mining
Existing process mining approaches are able to tolerate a certain degree of noise in process log. However, processes that contain infrequent paths, multiple (nested) parallel branches, or have been changed in an ad-hoc manner, still pose challenges. For such cases, process mining typically returns “spaghetti-models”, that are hardly usable even as a starting point for process (re-)design. In th...
متن کاملLog-transformation and its implications for data analysis
SUMMARY The log-transformation is widely used in biomedical and psychosocial research to deal with skewed data. This paper highlights serious problems in this classic approach for dealing with skewed data. Despite the common belief that the log transformation can decrease the variability of data and make data conform more closely to the normal distribution, this is usually not the case. Moreove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Measurement Science and Technology
سال: 2012
ISSN: 0957-0233,1361-6501
DOI: 10.1088/0957-0233/24/2/027001